Chapter 1 : INTRODUCTION

CHAPTER 1 

Introduction of Data-ware house
 
(i) Definition of Data-ware house
(ii) Characteristics of Data-ware house
(iii) Data-ware house Usage
(iv) DBMS vs Data-ware house
 
 
(i) DEFINITION OF DATA WAREHOUSE

"Data-warehouse is a digital storage system that connects large amount of data from many digital sources."
  • It stores current and historical data in one place and act as single source of an organization.
  • Its goal is produced statistical result that may help in decision making.

Description of Diagram: - 

1. Data source: - 
  • It collects the data from various sources/locations.
                 ロ                      ロ                            ロ                    ロ
              shop1          organization              city 1                shop2   
2. Dataware house: - 
  • It stores all the data from data sources.
  • It stores data in form of subjects.
  • It removes inconsistencies from data.
  • Analyse the whole data (past, present, future). 
  • Generate report of data.

 (ii) CHARACTERISTICS OF DATAWARE HOUSE

          1. SUBJECT-ORIENTED

          2. INTEGRATED

          3. TIME- VARIENT 

          4. NON-VOLATILE


1. SUBJECT-ORIENTED: - 
  • Data is stored by subjects, not by application.
  • It provides straightforward view around particular subject.

2. INTEGRATED: -
  • Main purpose is removing inconsistencies.
  • It comes from several operational system.
      Several operational systems: - 
                       1. remove inconsistencies: - (i) naming
                                                                            (ii) codes 
                                                                            (iii) data attributes
                                                                            (iv) measurement
                         2.Transformation
                         3. Integration of source data

EXAMPLE: -      

3. TIME-VARIENT DATA: -
  • It stores historical data in data warehouse.
  • With the help of past data, we can enable to take decision for future.
  • It contains the time element. 
EXAMPLE: - 

4. NON-VOLATILE DATA: -
  • Data is not updated/delete from data warehouse.
  • Used for queries & analysis of data.
  • Stored in read-only format.
5. SUMMARIZED: -
  • In decision- usable format.
  • enable to take strong decision for future.

(iii) DATAWARE HOUSE USAGE

Three kind of data warehouse applications: 

1. Information Processing: - 
  • Support querying basic statistical analysis & reporting using crosstabs, tables, charts & graphs.
2. Analytical Processing: - 
  • Multi-dimensional analysis of data warehouse data.
  • Support basic OLAP operations, slice-dice, drilling, pivoting.
3. Data Mining: - 
  • Knowledge discovery from hidden patterns.
  • supports association, constructing analysis model, represent mining result using visualization tools.
(iv) DIFFERENCE B/W DBMS AND DATAWARE HOUSE



LOGICALLY DIFFERENCE: - 

























CHAPTER 2 



Comments